Absolute convergence of Vilenkin-Fourier series
نویسندگان
چکیده
منابع مشابه
Almost Everywhere Convergence of a Subsequence of the Logarithmic Means of Vilenkin-Fourier Series
Abstract: The main aim of this paper is to prove that the maximal operator of a subsequence of the (one-dimensional) logarithmic means of Vilenkin-Fourier series is of weak type (1,1). Moreover, we prove that the maximal operator of the logarithmic means of quadratical partial sums of double Vilenkin-Fourier series is of weak type (1,1), provided that the supremum in the maximal operator is tak...
متن کاملConvergence of Fourier Series
The purpose of this paper is to explore the basic question of the convergence of Fourier series. This paper will not delve into the deeper questions of convergence that measure theory illuminates, but requires only the basic principles set out by introductory real and complex analysis.
متن کاملConvergence of Random Fourier Series
This paper will study Fourier Series with random coefficients. We begin with an introduction to Fourier series on the torus and give some of the most important results. We then give some important results from probability theory, and build on these to prove a variety of theorems that deal with the convergence or divergence of general random series. In the final section, the focus is placed on r...
متن کاملPointwise convergence of Fourier series
In the early 19 century, J. Fourier was an impassioned advocate of the use of such sums, of course writing sines and cosines rather than complex exponentials. Euler, the Bernouillis, and others had used such sums in similar fashions and for similar ends, but Fourier made a claim extravagant for the time, namely that all functions could be expressed in such terms. Unfortunately, in those days th...
متن کاملA Note on the Fourier Coefficients and Partial Sums of Vilenkin-fourier Series
The aim of this paper is to investigate Paley type and HardyLittlewood type inequalities and strong convergence theorem of partial sums of Vilenkin-Fourier series. Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Let m := (m0,m1, . . .) denote a sequence of the positive numbers, not less than 2. Denote by Zmk := {0, 1, . . . ,mk − 1} the additive group of integers modulomk. Define...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1980
ISSN: 0022-247X
DOI: 10.1016/0022-247x(80)90110-9